An introduction to equivariant cohomology and the equivariant first Chern class

نویسندگان

  • YiYu Zhang
  • Heather Macbeth
چکیده

The goal of this paper to provide a relatively accessible and integrated introduction to the algebraic topology of spaces with Lie group actions, in both the smooth and the holomorphic category. We present a detailed treatment of the basic constructions in equivariant de Rham theory and Dolbeault theory. We also discuss equivariant connections and curvature on vector bundles equipped with infinitesimal lifts, as well as the equivariant first Chern class of line bundles with infinitesimal lifts. A novel feature of this presentation is the definition of infinitesimal lift via differential operators on the vector bundle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Equivariant Cohomological Chern Characters

We construct for an equivariant cohomology theory for proper equivariant CW -complexes an equivariant Chern character, provided that certain conditions about the coefficients are satisfied. These conditions are fulfilled if the coefficients of the equivariant cohomology theory possess a Mackey structure. Such a structure is present in many interesting examples.

متن کامل

Hopf Algebra Equivariant Cyclic Cohomology, K-theory and Index Formulas

For an algebra B with an action of a Hopf algebra H we establish the pairing between equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that equivariant cyclic cohomology is a target space for the equivariant Chern character of equivariant summable Fredholm modules. We prove an analogue of Julg’s theorem relating...

متن کامل

J an 2 00 5 Chiral Equivariant Cohomology I

For a smooth manifold equipped with a compact Lie group action, we construct an equivariant cohomology theory which takes values in a vertex algebra, and contains the classical equivariant cohomology as a subalgebra. The main idea is to synthesize the algebraic approach to the classical equivariant cohomology theory due to H. Cartan and Guillemin-Sternberg, with the chiral de Rham algebra of Ma...

متن کامل

Equivariant Local Cyclic Homology and the Equivariant Chern-Connes Character

We define and study equivariant analytic and local cyclic homology for smooth actions of totally disconnected groups on bornological algebras. Our approach contains equivariant entire cyclic cohomology in the sense of Klimek, Kondracki and Lesniewski as a special case and provides an equivariant extension of the local cyclic theory developped by Puschnigg. As a main result we construct a multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017